
Communication

Initial Example of a Triangular Single-Molecule Magnet from Ligand-Induced Structural Distortion of a [MnO] Complex

Theocharis C. Stamatatos, Dolos Foguet-Albiol, Constantinos C. Stoumpos, Catherine P. Raptopoulou, Aris Terzis, Wolfang Wernsdorfer, Spyros P. Perlepes, and George Christou

J. Am. Chem. Soc., 2005, 127 (44), 15380-15381 DOI: 10.1021/ja0558138 Publication Date (Web): 18 October 2005

Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 23 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

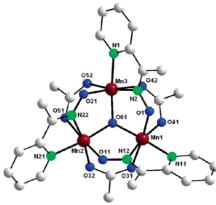
View the Full Text HTML

Published on Web 10/18/2005

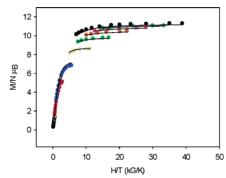
Initial Example of a Triangular Single-Molecule Magnet from Ligand-Induced Structural Distortion of a [Mn^{III}₃O]⁷⁺ Complex

Theocharis C. Stamatatos,† Dolos Foguet-Albiol,‡ Constantinos C. Stoumpos,† Catherine P. Raptopoulou,§ Aris Terzis,§ Wolfang Wernsdorfer,# Spyros P. Perlepes,*,† and George Christou*,‡

Department of Chemistry, University of Patras, 26504 Patras, Greece, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, Institute of Materials Science, NCSR "Demokritos", 15310 Aghia Paraskevi Attikis, Greece, and Laboratoire Louis Néel-CNRS, 38042 Grenoble, Cedex 9, France


Received August 24, 2005; E-mail: christou@chem.ufl.edu; perlepes@patreas.upatras.gr

Single-molecule magnets (SMMs) are individual molecules that function as nanoscale magnetic particles.^{1,2} They derive their properties from the combination of a large ground-state spin (S) and a magnetoanisotropy of the Ising-type (negative zero-field splitting parameter, D). They also display quantum tunneling of magnetization (QTM)³ and quantum phase interference, ⁴ properties of the microscale. SMMs of various types and metal topologies are now known, with most being Mn species. There are, however, no triangular SMMs; numerous oxide-centered triangular [M₃O(O₂- $(CR)_6L_3^{n+}$ (n = 0, 1) complexes are known for many transition metals,5a but antiferromagnetic exchange interactions within the [M₃O] core lead to small S values, and they are therefore not SMMs.⁵ It is thus tempting to conclude that this common triangular [M₃O] structural topology can never lead to SMMs, but we show in the present work that relatively small, ligand-imposed structural distortions can alter the sign of the exchange interactions and "switch on" the SMM property.


We have been exploring the use of 2-pyridyl oximes⁶ in the synthesis of 3d metal clusters, and we can now report that methyl 2-pyridyl ketone oxime (mpkoH) has yielded a new triangular [Mn^{III}₃O] product. This is very unusual in being ferromagnetically coupled with a resultant S = 6 ground-state spin and is indeed the first triangular SMM.

The reaction of [Mn₃O(O₂CMe)₆(py)₃](ClO₄) (1) with mpkoH (3 equiv) in MeOH/MeCN (1:2 v/v) gave a dark-brown solution. This was evaporated to dryness under reduced pressure, and the residue was dissolved in CH₂Cl₂ and layered with *n*-hexane. After 2 days, dark-brown crystals of [Mn₃O(O₂CMe)₃(mpko)₃](ClO₄)— \cdot 3CH₂Cl₂ (2·3CH₂Cl₂) were isolated in 80–90% yield. The structure⁷ of 2·3CH₂Cl₂ (Figure 1) consists of a near-equilateral Mn^{III}₃ triangle capped by μ_3 -O²⁻ ion O61. Each edge is bridged by an η^1 : η^1 : μ -MeCO₂⁻ group and an η^1 : η^1 : η^1 : η -mpko⁻ group, whose pyridyl ring is bound terminally to a Mn. O61 is 0.295 Å above the Mn₃ plane. The Mn^{III} oxidation states and O²⁻ protonation level were established by bond valence sum (BVS) calculations, ^{8,9} charge considerations, and the presence of Mn^{III} Jahn–Teller elongation axes (O1–Mn1–O31, O11–Mn2–O51, O21–Mn3–O42). The isostructural propionate analogue was prepared in an identical manner.

Variable-temperature DC magnetic susceptibility data were collected on dried **2** in the temperature range of 5.0-300 K in an applied field of 1 kG (0.1 T). $\chi_{\rm M}T$ is 13.01 cm³ mol⁻¹ K at 300 K, increasing on cooling to a maximum of 19.39 cm³ mol⁻¹ K at 30.0 K, and then decreasing to 17.41 cm³ mol⁻¹ K at 5.00 K.9 This indicates ferromagnetic exchange interactions within **2** to give an S=6 ground state, which is consistent with the 30.0 K value (spin-

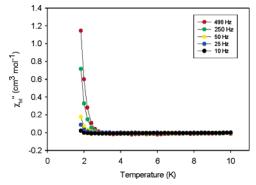
Figure 1. Molecular structure of 2. Color code: brown, manganese; blue, oxygen; green, nitrogen; gray, carbon.

Figure 2. Plot of $M/N\mu_B$ versus H/T for complex **2** at 7 (black dot), 6 (dark green dot), 5 (magenta dot), 4 (orange dot), 3 (light green dot), 2 (yellow dot), 1 (blue dot), 0.5 (red dot), and 0.1 (open dot) tesla. The solid lines are the fit of the data.

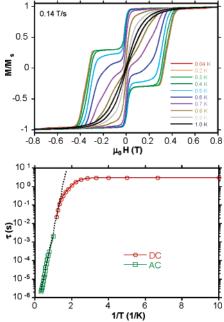
only (g=2) value for S=6 is $21~\rm cm^3~mol^{-1}~K)$. The low temperature decrease is assigned to Zeeman effects, zero-field splitting, and/or weak intermolecular interactions. The data were fit to the theoretical expression for a $3Mn^{\rm III}$ isosceles triangle. 9,10

To confirm the ground state of **2**, magnetization (*M*) data were collected in the 0.1-7 T and 1.8-10.0 K ranges, and these are plotted as $M/N\mu_{\rm B}$ versus H/T in Figure 2. The data were fit by matrix-diagonalization to a model that assumes only the ground state is populated, includes axial zero-field splitting ($D\hat{S}_z^2$) and the Zeeman interaction, and carries out a full powder average; the spin Hamiltonian is given by eq 1, where $\mu_{\rm B}$ is the Bohr magneton and μ_0 is the vacuum permeability, \hat{S}_z

$$H = D\hat{S}_z^2 + g\mu_{\rm B}\mu_0\hat{S}_zH_z \tag{1}$$


is the easy-axis spin operator, and H_z is the applied field. The fit (solid lines in Figure 2) gave S=6, g=1.92, and D=-0.34 cm⁻¹. 11

[†] University of Patras.


University of Florida

[§] NCSR "Demokritos".

Laboratoire Louis Néel-CNRS.

Figure 3. Plot of the out-of-phase (χ_M) AC susceptibility signal versus temperature for a microcrystalline sample of complex 2.

Figure 4. (Top) Magnetization versus field hysteresis loops for a single crystal of $2 \cdot 3 \text{CH}_2 \text{Cl}_2$ at the indicated temperatures; M is normalized to its saturation value, M_S . (Bottom) Arrhenius plot constructed from AC χ_M " versus T and DC magnetization decay versus time data. The dashed line is the fit of the thermally activated region to the Arrhenius equation.

Since 2 has significant S and D values, we investigated whether it is a SMM by AC susceptibility measurements in a 3.5 G AC field (Figure 3). Indeed, a frequency-dependent decrease in the inphase $(\chi_M'T)$ signal⁹ and a concomitant out-of-phase (χ_M'') signal were seen at <3 K (Figure 3), indicative of the slow magnetization relaxation of SMMs. Since intermolecular interactions and phonon bottlenecks can also give such signals, 12 confirmation that 2 is a SMM was sought by magnetization versus DC field scans on single crystals of 2.3CH₂Cl₂ using a micro-SQUID.¹³ Hysteresis, the diagnostic property of a magnet, was observed below ~1.0 K (Figure 4, top). The loops exhibit increasing coercivity with decreasing temperature and increasing field sweep rate,9 as expected for a SMM. The loops also display the steps indicative of QTM between M_S levels of the S=6 ground state, with the temperature independent coercivity at ≤0.3 K, indicating ground state QTM, that is, only between the lowest energy $M_S = \pm 6$ levels.

AC data to lower T and magnetization decay versus time data were collected and used to construct Figure 4 (bottom), based on the Arrhenius relationship $\tau = \tau_0 \exp(U_{\rm eff}/kT)$, where $U_{\rm eff}$ is the effective relaxation barrier, τ is the relaxation time, and k is the Boltzmann constant. The slope in the thermally activated region gave $U_{\rm eff} = 10.9~{\rm K}$ and $\tau_0 = 5.7~\times~10^{-8}~{\rm s}$. Below 0.3 K, the

relaxation was temperature-independent, consistent with relaxation by ground-state QTM.

Complex 2 is thus confirmed to be a SMM, the first with a triangular topology. What now demands explanation is why 2 is ferromagnetically coupled and a SMM whereas the many previous triangular [Mn₃O(O₂CR)₆L₃]⁺ complexes (such as 1) are antiferromagnetically coupled and are not? We believe the answer is that 2 has its central O²⁻ ion 0.295 Å above the Mn₃ plane due to the tridentate binding of the mpko⁻ ligand, whereas the O²⁻ ion in 1 and related species is in the Mn₃ plane, or essentially so (<0.03 Å). The central O²⁻ strongly mediates antiferromagnetic exchange via $M_{d\pi} - O_{p\pi} - M_{d\pi}$ orbital overlap, and any distortion away from planarity will thus weaken antiferromagnetic contributions to the observed exchange, $J_{\rm obs}$, between two Mn atoms. Since $J_{\rm obs}$ is the sum of ferro- and antiferromagnetic contributions, and $J_{\rm obs}$ is in any case only weakly antiferromagnetic in [Mn₃O(O₂CR)₆L₃]⁺ complexes,⁵ it is reasonable that structural distortion to a nonplanar $[Mn_3O]^{7+}$ core would lead to ferromagnetic J_{obs} and a resultant S = 6 ground state.¹⁴

In conclusion, the distortion imposed on a $[Mn_3O]^{7+}$ member of the venerable class of triangular, oxide-centered $[M_3O]^{6+,7+}$ complexes by a tridentate oximate ligand switches the exchange coupling to ferromagnetic and makes **2** the initial example of a triangular SMM. This suggests that it may also be possible to modify other triangular (or other) structures with chelating and/or bridging ligands to switch on the properties of a SMM.

Acknowledgment. Th.C.S. and S.P.P. thank the Program PYTHAGORAS (Grant b.365.037) for funding. G.C. thanks the U.S.A. National Science Foundation (Grant CHE-0414155).

Supporting Information Available: Crystallographic details in CIF format, bond valence sums, and magnetism data. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Christou, G.; Gatteschi, D.; Hendrickson, D. N.; Sessoli, R. MRS Bull. 2000, 25, 66–71 and references therein.
- (2) (a) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141–143. (b) Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804–1816.
- (3) Friedman, J. R.; Sarachik, M. P.; Tejada, J.; Ziolo, R. Phys. Rev. Lett. 1996, 76, 3830.
- (4) Wernsdorfer, W.; Sessoli, R. Science 1999, 284, 133-135.
- (G) (a) Vincent, J. B.; Chang, H.-R.; Folting, K.; Huffman, J. C.; Christou,
 G.; Hendrickson, D. N. J. Am. Chem. Soc. 1987, 109, 5703-5711 and references therein.
 (b) Jones, L. F.; Rajaraman, G.; Brockman, J.; Murugesu, M.; Sanudo, C. E.; Raftery, J.; Teat, S. J.; Wernsdorfer, W.; Christou, G.; Brechin, E. K.; Collison, D. Chem.—Eur. J. 2004, 10, 5180.
- (6) (a) For a review, see: Milios, C. J.; Stamatatos, Th. C.; Perlepes, S. P. Polyhedron, in press, and references therein. (b) Weyhermueller, T.; Wagner, R.; Khanra, S.; Chaudhuri, P. Dalton Trans. 2005, 2539.
- (7) Anal. Calcd (found) for dried **2** (solvent-free): C 37.59 (37.32), H 3.50 (3.49), N 9.74 (9.54). Crystal data for **2**·3CH₂Cl₂: $C_{33}H_{36}N_{6}O_{14}CI_{7}Mn_{3}$, 1117.54 g mol⁻¹, monoclinic $P2_{1}/c$, a=12.986(5) Å, b=14.978(6) Å, c=23.150(10) Å, $\beta=93.82(2)^{\circ}$, Z=4, V=4493(3) Å $_{3}$, $d_{calcd}=1.492$ g cm⁻³, T=293(2) K. Final R1=6.96 and wR2=19.36%.
- (8) (a) Liu, W.; Thorp, H. H. *Inorg. Chem.* 1993, 32, 4102–4105. (b) BVS for the Mn³⁺ and O²⁻ ions were 3.03–3.12 and 2.08, respectively.
- (9) See Supporting Information.
- (10) The fit gave J = +14.1 cm⁻¹, J' = +3.8 cm⁻¹, g = 1.91, and 0.9% paramagnetic impurity term; the TIP was held constant at 600 × 10⁻⁶ cm³ mol⁻¹. Equilateral [M₃O] triangles undergo the magnetic Jahn−Teller distortion, resulting in an isosceles (2J) situation. See: Cannon, R. D.; Jayasooriya, U. A.; Wu, R.; arapKoske, S. K.; Stride, J. A.; Nielsen, O. F.; White, R. P.; Kearley, G. J.; Summerfields, D. J. Am. Chem. Soc. 1994, 116, 11869−11874 and references therein.
- (11) The fit for the propionate analogue of 2 gave S = 6, g = 1.93, and D = -0.34 cm⁻¹; this complex gives the same ac susceptibility data as 2.
- (12) Chakov, N. E.; Wernsdorfer, W.; Abboud, K. A.; Christou, G. Inorg. Chem. 2004, 43, 5919-5930.
- (13) Wernsdorfer, W. Adv. Chem. Phys. 2001, 118, 99-190.
- (14) The *D* value will also be affected by this distortion, as the single-ion anisotropy axes are tilted. Details will be provided in the full paper.

JA0558138